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A Grey parrot (Psittacus erithacus), able to quantify 6 or fewer item sets (including heterogeneous
subsets) by using English labels (I. M. Pepperberg, 1994), was tested on addition of quantities involving
0–6. He was, without explicit training, asked, “How many total X?” for 2 sequentially presented
collections (e.g., of variously sized jelly beans or nuts) and required to answer with a vocal English
number label. His accuracy suggested (a) that his addition abilities are comparable to those of nonhuman
primates and young children, (b) some limits as to his correlation of “none” and the concept of zero, and
(c) a possible counting-like strategy for the quantity 5.
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Studies of number concepts in animals, particularly those
involving nonhuman primates (e.g., Boysen & Hallberg, 2000),
have been suggested as a means to examine the evolution of
numerical processes in humans. According to some researchers,
animals’ number sense is a neurally based, evolutionarily in-
herent skill (e.g., Dehaene, 1997) on which human competence
is based. Thus, the sensitivity to ordinality and numerosity
demonstrated by apes, lions, monkeys, dolphins, pigeons, coots,
crows, and rats should not be surprising (e.g., Beran, 2004; Biro
& Matsuzawa, 2001; Brannon & Terrace, 2000; Judge, Evans,
& Vyas, 2005; Kilian, Yaman, von Fersen, & Güntürkün, 2003;
Lyon, 2003; McComb, Packer, & Pusey, 1994; Nieder, Freed-
man, & Miller, 2002; Olthof & Roberts, 2000; Shumaker,
Palkovich, Beck, Guagnano, & Morowitz, 2001; Smith, Piel, &
Candland, 2003; Thompson, 1968; Xia, Emmerton, Siemann, &
Delius, 2001; for additional references, see Pepperberg & Gor-
don, 2005; cf. Dehaene, 2001). Several researchers, however,
consider more advanced numerical abilities— exact counting of
quantities of four or more and arithmetic operations—to be

uniquely human and based on language skills (Spelke &
Tsivkin, 2001).

In this view, language, in conjunction with cognitive systems
present in humans and other animals, underlies humans’ unique
development of number knowledge. Supposedly, for animals
and young children (�3 years), one form of language-
independent representation handles exact numerosities up to
and including four by tracking distinct individual members of a
set (i.e., items are not seen as a set); another language-
independent system dealing with approximate numerosity takes
over for larger quantities. The latter system fails to represent
each set member as a persisting individual (Spelke & Tsivkin,
2001) and thus cannot accurately track amounts over four (e.g.,
a set can be judged as more or less than other sets, but the
specific amount cannot be determined). These systems seem to
relate, respectively, to subitizing and estimating (Davis & Pé-
russe, 1988), subitizing being defined (e.g., Kaufman, Lord,
Reese, & Volkmann, 1949) as a fast, effortless, and accurate
perceptual apprehension of number usually of four or less that
uses preattentive mechanisms and generally involves linear or
canonical patterns of objects (think dice or dominoes); and
estimation being a perceptual apprehension of larger numbers,
influenced by density and the regularity of the objects’ distri-
bution that enables approximations (e.g., between 80 and 100;
see Dehaene, 1997, pp. 70 –72). In this view, language abilities
involving reference and ordering of labels that emerge as chil-
dren mature allow them to integrate knowledge of quantity in
the small sets with their initially rotely memorized number
sequence to form 1:1 correspondences—that is, generate sym-
bolic representations of number—that can be extended to larger
amounts and thus achieve exact accuracy for sets above four
(Carey, 2004; Carey & Spelke, 1994; Spelke & Tsivkin, 2001).
Other researchers have offered somewhat differing explanations
of how children acquire the ability to symbolize number, to
count, and to do arithmetic (e.g., suggest use of spatial skills,
such as number lines), but they agree that most animals do not
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exhibit such behavior, at least for numbers greater than four
(e.g., review in Mix, Huttenlocher, & Levine, 2002).1

Animals trained with human-based symbolic systems using Ar-
abic numerals (chimpanzees: Boysen & Berntson, 1989; Matsu-
zawa, 1985) or with human speech including number words (Grey
parrots: Pepperberg, 1987, 1994) would, however, seem to provide
intermediary links between animals lacking such training and
children. Chimpanzees can both choose Arabic numerals to quan-
tify a collection from zero to eight (production) and pick the
appropriate collection of items after seeing an Arabic numeral
(comprehension; zero to three: Boysen & Hallberg, 2000; one to
nine: Biro & Matsuzawa, 2001; note Beran & Rumbaugh, 2001).
At least one Grey parrot vocally has produced English quantity
labels to identify sets of six or fewer items, including novel items,
random patterns, and subsets of heterogeneous groups (e.g., num-
ber of blue blocks within groupings of blue and green blocks and
balls, Pepperberg, 1994) and has demonstrated comprehension of
these vocal numbers, including some simple understanding of a
zero-like concept (Pepperberg & Gordon, 2005). In all cases,
although these animals have both successfully used human sym-
bols and exceeded the four-unit stricture suggested as the divide
between animal and human number competence, the extent to
which they understand and use number when compared to young
children (e.g., Mix et al., 2002) is still unclear.

For example, only one study, on an ape, involved summation
and required that the animal symbolically label the sum (Boysen &
Berntson, 1989); the study, however, used a quantity totaling only
four. Other studies, involving additive and subtractive tasks and
using larger numbers of objects (up to 10), used only one type of
token and required subjects to choose the larger amount, not label
the final quantity (e.g., Beran, 2001, 2004; Rumbaugh, Savage-
Rumbaugh, & Hegel, 1987; Rumbaugh, Savage-Rumbaugh, &
Pate, 1988).2 This procedural difference is important. When only
one type of token (e.g., marshmallows) is used in studies of
relative amounts, evaluations of contour and mass, rather than
number, could be responsible for the responses (Rousselle, Palmer,
& Noël, 2004; see review in Mix et al., 2002), as was the case for
pigeons (Olthof & Roberts, 2000). In these studies, however, the
close phylogenetic relationship between apes and humans (Olson
& Varki, 2004) and knowledge of the similarities between hierar-
chical demands of the apes’ ecological and social structures and
those of early humans (foraging priorities, fission–fusion relation-
ships; Boysen & Hallberg, 2000; Rumbaugh et al., 1987), as well
as recent studies on possible parallels in brain areas underlying
numerical judgments in humans and monkeys (Göbel & Rush-
worth, 2004; also Dehaene, Piazza, Pinel, & Cohen, 2003), suggest
that such data reflect an evolutionary continuum in numerical
abilities. Whether such a continuum extends to nonprimates is
unclear.

It is of interest to note that not all the arithmetical studies cited
above involved the quantity zero. Zero is unique in that counting
and adding presuppose something to add or count, and the absence
of quantity seems to present some initial confusion for children
(see Bialystok & Codd, 2000). Apes’ use of zero has not been
shown to be fully equivalent to that of humans. Thus, although the
chimpanzee Sheba was tested with the placard “0” in her addition
trials and could match a single empty food tray to this placard, she
never had to respond to the total absence of objects to be added
(Boysen & Berntson, 1989). In the Rumbaugh et al. (1987, 1988)

studies, the chimpanzees Sherman and Austin had to choose the
greater quantity between two collections in which one food well
could be empty but were not asked to label the results; Beran’s
(2001, 2004) studies also did not involve labeling zero. And Ai,
who was trained to both produce and comprehend zero with
respect to the absence of quantity, was not tested on zero in terms
of arithmetic (Biro & Matsuzawa, 2001).

I now report evidence to suggest that a Grey parrot, Alex, a
creature with considerable evolutionary distance from both human
and nonhuman primates, but with similar ecological demands and
possibly similar social structures in nature (Pepperberg, 1998),
demonstrates, without training, summation capacities comparable
to those of nonhuman primates, involving labeling of amounts up
to six. Of interest was that these experiments were unplanned. My
students and I had begun a sequential auditory number session
(training to respond to, for example, three computer-generated
clicks with the vocal label “three”) with another bird, Griffin, in
the standard manner, by saying “Listen,” clicking (this time,
twice), and then asking “Griffin, how many?” Because Griffin
refused to answer, we replicated the trial. Alex, who often inter-
rupts Griffin’s sessions with phrases like “Talk clearly” or who
occasionally answers even though he is not part of the procedure,
said “four.” I told him to be quiet, assuming that his vocalization
was not intentional. We then replicated the trial yet again with
Griffin, who remained silent; Alex now said “six.” I thus decided
to replicate the Boysen and Berntson (1989) study as closely as
possible under constraints of having a subject who was not allowed
to move about the laboratory on his own and to extend the study
to further work on zero. Data from these experiments not only
demonstrated Alex’s competence in addition, but also present
intriguing evidence that he may use a counting-like strategy for the
quantity five and that his concept of zero, although closely related
to absence, is not as fully developed as that of humans.

Method

Subject and Housing

Alex, a 28-year-old male Grey parrot (Psittacus erithacus), had been the
subject of cognitive and communicative studies for 27 years, including
those involving numerical competence (Pepperberg, 1987, 1994; Pepper-
berg & Gordon, 2005). Testing locations and living conditions when
neither testing nor training was in progress were described in Pepperberg
and Wilkes (2004). Food and water were available at his vocal request at
all times during testing. In this study, he used his previously documented
ability to vocally label quantities up to and including six (Pepperberg,
1994).

Apparatus

Testing involved familiar objects. The tray that formed the substrate for
all trials had been used for previous studies on label comprehension

1 Gallistel and Gelman (1992) argued for a preverbal counting mecha-
nism that enables animals to perform some mathematical operations, but
they (like other cited researchers) considered only small quantities and
approximate answers for operations involving larger quantities. See
Gelman and Cordes (2001) for an updated version of their thesis, including
somewhat larger numbers (e.g., five).

2 Other studies have used smaller quantities (e.g., 0–4) and will not be
discussed because tasks involving these small quantities can be solved by
perceptual mechanisms (see discussion in Beran, 2004).
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(Pepperberg, 1990, 1992), object permanence (Pepperberg & Kozak,
1986), and other number capacities (Pepperberg, 1994; Pepperberg &
Gordon, 2005). I, along with other trainers, concurrently used the same tray
for training spatial concepts and phoneme and Arabic number recognition
(e.g., Pepperberg, in press-a, in press-b), so the tray was not a cue for
addition. Plastic cups used to cover items to be added were also familiar,
being the subject of queries on color and on the concepts of same versus
different and relative size, and used as containers for object permanence
and in concurrent training for a recursion study.3 Items to be summed were
familiar treats (e.g., candy hearts, variously sized jelly beans, pieces of
nuts). Such items were used rather than the usual nonfood objects because
of their small size and their interest to the parrot. Note that only the hearts
were of one consistent size, so that tasks generally involved objects of
different mass and contour.

Procedure: Object Presentation

In the absence of any prior training, an addition trial began when an
experimenter, out of Alex’s line of sight, placed objects, counterbalancing
number sets on the right and left across trials, onto the surface of the tray
and covered the items with plastic cups. When multiple objects were placed
under a single cup, each object was spaced less than 1 cm from other
nearest items, and generally, the distance was less. The experimenter
brought the tray up to Alex’s face, lifted the cup on Alex’s left, showed him
what was under the cup for 2–3 s in initial trials, and then replaced the cup
over the quantity; the procedure was replicated for the cup on Alex’s right.
In trials comprising the last third of the experiment, Alex was given
approximately 10–15 s to view the items under each cup. The experimenter
made eye contact with Alex, who was then asked, vocally, and without any
training, to respond to questions, such as “How many nut total?” No
objects were visible during questioning. He had previously demonstrated
he could respond vocally to our queries (Pepperberg, 1999). To respond
correctly, he had to remember the quantity under each cup, perform some
combinatorial process, and then produce a label for the total amount. He
was not given any time limit in which to respond, but if he did not answer
within about 5 s, the question was restated; if he grabbed and overturned
a cup, the objects were covered, he was shown both sets of objects
sequentially, and the question was restated. Given that his time to respond
was generally correlated with his current interest in the items being used in
the task, rather than the task itself (Pepperberg, 1988), I did not record
latency to respond.

General Testing Procedure

Test sessions on a single numerical array of various object collections
occurred on average 2–5 times a week from June 2004 to January 2005,
with breaks for student vacations, intersessions, and a hiatus from Novem-
ber 2004 through mid-January 2005.4 Test questions were presented inter-
mittently either during free periods (when birds were requesting various
foods or interactions) or during sessions on current (and thus unrelated)
topics (e.g., using Alex to assist in training another parrot on color labels)
until all questions for the experiments were presented.

Details of test procedures, including descriptions of precautions against
inadvertent and expectation cuing, can be found in Pepperberg (1981,
1990, 1994); summaries are below. A trial would be repeated in a session
only if Alex’s initial answer was incorrect or if his grabbing a cup required
re-presentation as noted above (e.g., Pepperberg, 1981, 1987). Thus, the
number of times an array was presented to Alex generally depended on his
accuracy. If Alex produced the appropriate label, he received praise and the
objects to which the question referred or was allowed to request an
alternative reward. No further presentations of the same material then
occurred; that is, there was only a single “first trial” response. If an
identification was incorrect or indistinct, the examiner removed the tray of
objects, turned his or her head, and emphatically said “No!” This procedure

was used in order to penalize a “win–stay” strategy, and presentation
continued until a correct identification was made or four attempts occurred;
errors were recorded.

As in all studies with Alex, the protocol differed from ones used with
other animals in two respects. First, the task capitalized on Alex’s ability
to work in the vocal mode; second, each trial was presented intermittently
during training and testing of other unrelated topics also under study.
Alex’s responses thus had to be chosen from his entire repertoire (more
than 90 vocalizations, including labels for foods and locations) and from
among numerous possible topics concerning various exemplars and ques-
tions during each session; that is, Alex had to attend to the specific type of
question being posed. This design not only increased the complexity of the
task, but prevented several forms of cuing (see below; see also Pepperberg,
1999; Premack, 1976, p. 132).

Controls Against Expectation and Experimenter-Induced
Cuing

Test situations included specific precautions to avoid cuing. One control
was a design such that each test session was, as noted above, presented
intermittently during free periods or work on unrelated topics. An examiner
who, for example, poses a series of similar questions may come to expect
a particular answer and unconsciously accept an indistinct (and, by our
criteria, incorrect) response of, for example, “gree” (a mix of “green” and
“three”) for “green.” As noted above, Alex’s responses had to be chosen
from his entire repertoire and from among numerous possible topics during
each session; each session contained only a single number array. Second,
in general, an experimenter other than the one presenting the tray (one of
five possible individuals in these studies), who did not know what was on
the tray, confirmed the answer; his or her interpretation of Alex’s response
was thus unlikely to be influenced by expectation of a certain number label.
Only after his or her confirmation was Alex rewarded (Pepperberg, 1981).
Third, this evaluator was unlikely to be influenced by hearing the type of
question posed: In a previous study, transcriptions of contextless tapes of
Alex’s responses in a session agreed at a rate of 98.2% with original
evaluations (Pepperberg, 1992).5 Fourth, because Alex had not been
trained on this task, no overlap occurred between training and testing
situations, and because training on number labels had occurred years
before, Alex could not have picked up on trainer-induced cues specific to
a given label (Pepperberg, 1981); moreover, because a total of six different
experimenters were involved in the testing, the presence of a particular
individual could not cue a number session. Fifth, I also used several
different common treats in testing, including those used for training the
other birds (e.g., various jelly beans for training on colors); thus, particular
objects would not cue Alex that a number test was in progress. Not even
the specific concatenation of tray, cups, and treats could cue him, as the
arrangement was not exclusively used on number trials (e.g., it was similar
to that used in the recursion study in progress) and thus did not signal a
number test.

3 Thus, Alex was used to having objects hidden under cups, knowing
that hidden items had not disappeared, and being asked about hidden items.

4 In late November 2004, Alex began to exhibit the same kind of
inattention documented in Pepperberg and Gordon (2005); instead of
persevering with trials that would then likely have to be discarded, I
switched to testing on a different topic for 10 weeks.

5 This percentage represented 106 matches of 108 vocalizations. As an
additional control, the principal investigator made two transcriptions of a
student, new to the lab, as he responded to the same type of questions as
Alex. The first transcription was live; the second, made several days later,
was of a tape from which all questions had been edited. The two transcrip-
tions of the student’s vocalizations matched to within 95.8% (68 of 71
vocalizations).
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Approximately 15% of trials were videotaped to check further for cuing
and interobserver reliability. I used video so as to be able to check for
Alex’s attention and motivation. One trial was discarded from the addition
analysis because Alex was indeed not attending to the tray, but the trial was
kept for an interobserver reliability check because of the clarity of the
response. Observers for reliability did not watch the video but listened as
if they were scoring in the laboratory, stating what they heard Alex say. If
interobserver reliability with blind coders was high, I could be assured of
the validity of other trials. Given that Alex was far more interested in the
human who was taping as well as the camera and mike than in the objects
to be enumerated, such trials were difficult to execute and were kept to a
minimum.

Scoring

Alex’s test scores were calculated in two ways. Because the test proce-
dure required that, if Alex erred, a question could be repeated (up to four
times) until he produced the correct response, I scored both first trial and
all trial responses. First trial results were the percentage of correct re-
sponses on first trials. The overall test score (results for all trials) was
obtained by dividing the total number of correct identifications (i.e., the
predetermined number of collections) by the total number of presentations
required to obtain the correct responses. Statistics were performed on first
trials only.

To learn whether Alex’s results were statistically significant, I used two
binomial tests. In one, chance (1/6) was based on number of labels (six)
relevant to the task—that is, as if Alex was randomly guessing among all
number labels after hearing “How many X total?” A second, more con-
servative test used a larger value of chance (1/3), as though Alex were
choosing to respond with one of the two viewed quantities (the addends)
without summing, as well as the possible answer. The least conservative
calculation (not performed) would include the probability of his producing
any of the approximately 100 labels in his repertoire; all calculations
assumed that Alex would always ( p � 1) attend and respond correctly to
the “How many . . . ?” question (i.e., not provide a random label that had
no connection to the task at hand).

Experiment 1: Addition

Method

Experiment 1 consisted of 48 trials using the procedures described
above. I presented each total amount eight times, in random order, in sets
of six, such that no collection was shown sequentially. Addends were
displayed an equal number of times, such that, for example, amounts
adding to 6 were presented as 6 � 0, 5 � 1, 4 � 2, and 3 � 3, two times

each, with quantities alternating under right and left cups; amounts adding
to 5 were displayed as 5 � 0, 4 � 1, 3 � 2, and so forth; I could present
1 only as 1 � 0, randomizing quantity under right and left cups (N.B.,
unless otherwise stated, all X � Y collections refer to both X � Y and Y �
X forms). All possible addend collections were also randomized; thus, the
preponderance of X � 0 trials at the end of the study occurred by chance.
A full list of trials is given in the Appendix. On a given trial, I generally
used objects differing in size; for example, I used both small and large jelly
beans or irregular nut pieces to avoid issues of mass and contour. In six
trials, I used identical candy hearts to see whether Alex would be more
accurate if he could use mass or contour. The number of trials was
deliberately kept low to avoid training. Finding the intriguing behavior on
5 � 0 sets (see below), I began giving Alex more time (approximately
10–15 s) on these and all subsequent trials, noted by an asterisk in the
Appendix, and replicated the earlier 5 � 0 trials under the longer time
interval.

Results

Alex’s scores were calculated several ways and examined for
several types of issues (see Table 1). Retaining the errors for the
5 � 0 trials given under the 2- to 3-s interval, I found that Alex’s
accuracy was 41 of 48, or 85.4% for first trial responses ( p � .005;
binomial test, chance of 1/3 or 1/6), and 48 of 60, or 80% for all
trials. If replications of the 5 � 0 trials under the longer time
interval are substituted, his first trial accuracy was 43 of 48, or
89.6% ( p � .005), and 48 of 53, or 90.6% for all trials. His
accuracy for small quantities (1, 2) was 15 of 16, or 93.8% ( p �
.005); his accuracy for large sums (5, 6) when given the longer
time period was 13 of 16, or 81.3% ( p � .005); the difference is
nonsignificant (comparing errors and correct scores for small vs.
large trials, p � .599, Fisher’s exact test); note, too, that all the
errors for the larger sums involved apparent labeling of the ad-
dends before labeling the total. Of particular interest was his score
for his first six trials, that is, the first time he was presented with
each of the sums; his accuracy was 5 of 6, or 84.3% ( p � .02;
binomial test, chance of 1/3). Using candy hearts did not help him
with the second 5 � 0 trial or the single 3 � 1 error. Although he
did not err on any of the other four trials using hearts, the number
of errors overall was too small to suggest that using objects of
equal mass and contour made any difference. It is interesting to
note that three of his four errors on queries other than 5 � 0
involved situations where the larger addend was on his left, that is,

Table 1
Results and Errors for Experiment 1

Sum Score % pa Trial type error Error descriptions

1 8/8 100.0 �.005
2 7/8 87.5 �.005 1 � 1 5
3 8/8 100.0 �.005
4 7/8 87.5 �.005 3 � 1 3 (seemed to label addend)
5 4/8 50.0 .25 3 � 2 (2 times)b 2, 3; 3 (seemed to label addends)

5 � 0 (2 times)c 6 (4 times); 6 (4 times)
6 7/8 87.5 �.005 3 � 3 3 (seemed to label addend)

a Calculated on the basis of 1/3, the stricter criteria.
b Note that if only these errors were counted, and the correct responses for 5 � 0 trials were repeated under
longer time trials, Alex’s score would have been 6/8, or 75%, and his p value would have been .02.
c Under 2- to 3-s time limit; when trials were repeated with longer times, Alex was correct.
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in reverse of the ordinal number line; however, he was correct on
18 of these reversed-order trials, suggesting that the errors were
random (comparing errors and correct scores for reversed vs.
nonreversed trials, p � .606, Fisher’s exact test). Initially, when
given only 2–3 s, he was always wrong on the 5 � 0 sum,
consistently stating “6.” When given 10–15 s, his accuracy went to
100% on 5 � 0 and 0 � 5 trials; the difference in accuracy
between the shorter and longer interval trials was significant
(counting all queries for 0 � 5 and 5 � 0, Fisher’s exact test, p �
.01). For other trials, he went from 26 of 29 (89.7%, p � .005) for
2–3 s to 15 of 17 (88.2%, p � .005) for 10–15 s, essentially
remaining constant.

Also of interest were interobserver reliability checks on his
videotaped responses. Five different observers from the Radcliffe
Institute (four female, one male) completely unfamiliar with
Alex’s speech patterns listened to a tape for each of Alex’s number
labels. On one trial, two said they could not hear Alex’s response,
but the other three correctly identified the label as “three.” On the
trial for “five,” the male observer misidentified the label, but on
trials for the other numbers, all observers correctly identified all
the labels that Alex produced. If I collapse all trials over all
listeners, omitting the two trials from the listeners who could not
hear the response, interobserver reliability is 96.4% (i.e., observers
agreed on 27 of 28 trials).

Discussion

Alex demonstrated some competence in summing small quan-
tities. His results seemed independent of the number or type of
objects involved, with the exception of the 5 � 0 trials given in
2–3 s that he labeled as “six,” and some trials involving the
quantity three where he seemingly labeled the addends before
providing the sum. If the long-interval 5 � 0 trials are used, he was
as accurate on small quantities involving one or two as he was on
those summing to five or six. His performance was apparently
independent of mass or contour; having equal mass or contour did
not help him when the time was restricted for 5 � 0. Thus, in
general, his data are comparable to that of young children (Mix et
al., 2002) and chimpanzees (Boysen & Hallberg, 2000).

The mechanism that Alex used cannot easily be determined; the
data suggest he might have used different mechanisms in different
situations. Although I have no evidence that he can count exactly
as do humans (see Fuson, 1988)—that is, (a) produce a standard
sequence of number tags, (b) apply a unique number tag to each
item to be counted, (c) remember what already has been counted,
and (d) know that the last number tag used tells how many objects
are there—he may have used a related strategy in some trials. I
discuss various possibilities below.

Might Alex have used a nonverbal accumulator? This system
was initially proposed as a means to enumerate sets of discrete
events (numbers of sequential tones, a continuous amount of time;
a switch gates one pulse per event into an accumulator at a
constant rate; its fullness indicates the total amount; Meck &
Church, 1983). It is generally posited as a mechanism for com-
paring sequential sets or preverbal counting (e.g., Gallistel &
Gelman, 1992). To use an accumulator, Alex would have to
visually partition and scan individual items in each addendum at a
constant rate (an event for each pulse) and not reset his accumu-
lator for the second addendum. The system is inherently inexact

because of the variability in scanning sets of static items (i.e., the
rate of pulses; see Mix et al., 2002); it produces errors normally
distributed around the correct response and shows increasing er-
rors with increasing set size, specifically above three; it would not
provide the exact numerosities Alex’s task requires. Note that Alex
did not make more errors for larger quantities.

For collections involving X � Y, Y � 0, he might have formed
representations in memory for each addend and then recalled them
as a total quantity to be labeled. He could begin with object files
for the individual addends (pointers enabling the brain to keep
track of particular objects; e.g., Dantzig, 1930; Kahneman, Treis-
man, & Gibbs, 1992; Thomas, 1992; Trick & Pylyshyn, 1994) or
some more imagistic model (of the whole scene; e.g., Uller, Carey,
Huntley-Fenner, & Klatt, 1999), then switch to a process posited
by Huttenlocher, Jordan, and Levine (1994), wherein (total) rep-
resentations now provide conceptual referents for count words
(Mix et al., 2002); this process is proposed for children who are
just beginning to correlate count words and numerosities of four or
more. In general, object files are posited for quantities of four or
fewer, and quantification involving such files is assumed to occur
speedily (see Mix et al., 2002). Only for the 5 � 1 set would Alex
see an addend above four; he could have replied “six” simply
because he saw a large grouping (greater than four) and used, by
default, his largest vocal number label. Note that Ai responded
more accurately and faster on the largest number, relative to the
next largest number, during training to expand her range of number
labeling (Murofushi, 1997), suggesting a similar mechanism. A
comparable result may be seen for adult humans (Balakrishnan &
Ashby, 1991; Simon & Vaishnavi, 1996). Alex’s ability to respond
correctly for 4 � 1 sets, even under time constraints, suggests that
he might use either a five-member object file or some form of
representational summing in memory; remember, no time con-
straints existed for his response.

Note that four of five errors on X � Y trials involved labeling
one or both addends (particularly that of “three”) before producing
a correct response; the behavior occurred for 3 � 1, 3 � 2, and 3 �
3. It is interesting to note that in the two 3 � 2 cases, the addend
labels were produced after Alex beaked the cups and lifted them on
his own before answering. Possibly this combination, summing to
five, was particularly difficult, but he did correct himself, unlike
the case for 5 � 0. Also, if only these errors and results for 5 � 0
when he was given 10–15 s are counted, his score for sums of five
would be 6 of 8, or 75% ( p � .02; binomial test, chance of 1/3),
suggesting that a sum to five was not, in and of itself, particularly
difficult; he did not err on 4 � 1. Why he labeled three when it was
an addend, in 4 of 10 instances, and, in general, did not do so with
other addends, is unclear. Given that his response on the very first
trial, “three,” garnered excessive praise from testers, possibly some
interference occurred that made production of the label difficult to
inhibit whenever he viewed the quantity in these circumstances.

For most X � 0 collections, he might have subitized. In general,
reaction times are used to distinguish counting from subitizing
(e.g., Mandler & Shebo, 1982; Trick & Pylyshyn, 1989, 1994), but
Alex cannot be evaluated on latency to respond: His response
times correlate with his desire for the rewards (Pepperberg, 1987,
1988). Here, however, I initially constrained viewing time to 2–3
s, restricting his time to interpret what was being presented. Thus,
for X � 0, he might, as do humans, have subitized X � 1 to 4.
Also, when given only 2–3 s, he may have perceived five as “lots”
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and, knowing “six” was his largest label, used it as a default for
anything above four. He did not simply confuse five and six; he
never said “five” for six items. Given 10–15 s for 5 � 0, he was
correct, which suggests that he used additional time to his advan-
tage, maybe like 4- to 5-year-old children who were more accurate
on five-element arrays when given additional time (Gelman &
Tucker, 1975).

The mechanism for the 5 � 0 trials is unclear. He did not
subitize, precisely because he needed extra time beyond that re-
quired for four items. If he used Huttenlocher et al.’s (1994)
mental model, would inclusion of only one item beyond four
increase the time needed to recall and match a label to the five-
item model? If such a model existed, it would have been created to
respond correctly in earlier number production and comprehension
studies in which he easily labeled five items (e.g., Pepperberg,
1987, 1994; Pepperberg & Gordon, 2005); Alex would not likely
have needed extra time here. And according to researchers who
study clumping or chunking in adults—dividing a set of four or
more into smaller groupings that are subitized and then summed
(von Glasersfeld, 1982)—Alex would not have needed more than
2–3 s for that mechanism unless he responded like young children,
who may need more time to segment four or five items into smaller
subitizable units than do adults (Fischer, 1992). Dehaene (1997),
however, argued that the additional time needed or the decrease in
accuracy when children subitize four rather than three or fewer
items has to do with four being a boundary between subitizing and
estimating, not with chunking. Also, in all discussions of subitizing
versus other strategies, adults’ subitizing supposedly occurs during
a time course of at most a few hundred milliseconds (i.e., generally
less than 0.35 s for four and less than 0.70 s for five; see Mandler
& Shebo, 1982); in all cases, Alex had considerably more time
available. Nevertheless, it is conceivable that Alex needed more
than a few seconds to individuate the set of five elements, so that
he could then use a noniterative (noncounting) mechanism (for
comparisons with children, note Huntley-Fenner, 2001).

Might Alex have analyzed 5 � 0 in stages during a longer time
interval? Maybe he first rejected “four,” which he can subitize,
next dismissed the impulse to respond with his largest label, and
then finally responded by recalling a model for five. This proce-
dure would explain the time delay but not why he did not initially
use the model if it existed for five, or why he persisted with “six”
even when told he was wrong during the shorter time interval.
Having been shown the sets four times in those trials, he would
have had a total exposure equal to that of the single longer time
interval.

During the longer times for 5 � 0, Alex might have used a form
of nonvocal tagging, approaching that of human counting. Work in
progress shows that, despite lack of ordinality training, he under-
stands which of two Arabic numerals represents the larger or
smaller quantity (Pepperberg, in press-b). Such data suggest that
he knows ordinal relationships among his numbers even if he
cannot vocally recite a standard number sequence. A counting-like
strategy may be one logical interpretation. Preschoolers’ under-
standing of counting is enhanced when it is embedded in a
number-relevant reasoning task, such as addition or subtraction
(Zur & Gelman, 2004); possibly this was true for Alex. His 5 � 0
trials, by chance, did not occur until about half the trials were
completed and thus until he had considerable experience with
addition. Also, counting may be facilitated by an ability to subitize

and sum small groups of items and by specific processes of
recitation (nonverbal tagging) and attention (segmentation) (e.g.,
Piazza, Giacomini, Le Bihan, & Dehaene, 2003). Nevertheless,
being able to label a collection correctly, even one larger than four,
does not mean, even in children, full understanding of counting.
Children who correctly respond to “How many?” may fail on
“Give me X” because they associate collections and labels but do
not fully comprehend the connection between cardinality and
counting—they do not understand, for example, how to count to
form a specified collection (review in Sophian, 1995).

I do propose, nonetheless, that Alex used some counting-like
strategy for 5 � 0 sets. His accuracy on 4 � 1, but not 5 � 0, under
constrained viewing, not response, time suggests he can track
quantities up to four, remember them, and then mentally sum them
to give a correct response. He did not need anything else for
collections summing to, but not including, five, because no time
constraint existed on summing. His general accuracy on 2 � 3 may
also support this claim; labeling the addends may have assisted
memory. His need for extra viewing time only for 5 � 0 suggests
he used a different strategy. As for Fischer’s (1992) argument for
chunking, chunking is unlikely to take much longer than the 2–3 s
Alex was initially given; his use of a counting-like strategy could
have required the extra time.

Even if Alex were counting, his use of a “counting on” strategy
(Baroody & Dowker, 2003; Fuson, 1988; Groen & Parkman, 1972;
Groen & Resnick, 1977) is unlikely. Such a procedure involves
representing one addend, for example, “three,” either by subitizing
or counting, then sequentially denoting each element in the next
addend, for example, “four, five” to give a total, “five.” Older
children (e.g., first graders) usually start with the larger set (Ash-
craft, 1982; Groen & Parkman, 1972; Siegler, 1987); if Alex did so
he might have made significantly fewer errors when shown a
larger set first (a reversal of the number line), but he did not. Given
that, as noted above, I lack data to suggest that Alex produces a
standard counting sequence, he probably does not “count on.”
Children generally do not fully understand this procedure until
they are 5 or 6 years old (Bialystok & Codd, 1997); thus, Alex’s
lack of this mechanism would not be surprising.

Experiment 2: Concept of Zero

Method

Experiment 2 consisted of eight trials, interspersed randomly within
those of Experiment 1, designed to examine Alex’s concept of absence of
number. Alex had never had formal instruction on a zero concept. He had,
on his own initiative, begun to use “none” spontaneously to refer to the
absence of a particular number of objects on a tray during a study of
number comprehension (Pepperberg & Gordon, 2005). He subsequently
succeeded in additional trials in this format, stating “none” to questions
about, for example, five items when two, three, and six item sets were
present. Now I presented questions of “How many bean [or nut or heart]?”
and put nothing under any of the cups. The goal was to determine the extent
to which he could generalize the use of “none” without instruction.

Results

On the first four trials, Alex simply looked at the tray and said
nothing. He would sometimes try to lift the cups himself, and I
would then show him again, by lifting the cups one at a time, that
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there was nothing present. On the fifth, sixth, and seventh trials, he
said “one.” On the last trial, he again refused to answer.

Discussion

Zero is interesting because it lacks concrete reality and thus may
emerge for children later than other numerical concepts (Bialystok
& Codd, 2000; Wellman & Miller, 1986); specifically, as noted
above, numerical competence is based on the assumption that
something exists to enumerate, whatever the process involved. My
asking Alex to enumerate something that did not exist clearly
presented a challenge. As noted above, the question was related to
that of a previous study (Pepperberg & Gordon, 2005)—for ex-
ample, “What color [is the collection of] five [items]?”—when
there were not five of anything (e.g., in a collection of two purple
blocks, three green blocks, and six orange blocks), but for those
trials many objects were present; here, nothing was present other
than the two cups to which he had habituated. Unlike nonhuman
primates in other studies, Alex had had no formal training on the
zero concept. In contrast, the chimpanzee Sarah had received
extensive training on labeling arrays of candies and junk objects
with Arabic numbers, including zero (Boysen, 1993; Boysen &
Berntson, 1989), and Ai had similar production and comprehen-
sion trials on computer monitors (Biro & Matsuzawa, 2001).
Previous to this study, Alex had generalized his understanding of
“none” as a trained response to the absence of information from
questions on similarity and difference (Pepperberg, 1988) to, with-
out training, relative size (e.g., to respond to “What color [object]
bigger?” when two objects were identical in size; Pepperberg &
Brezinsky, 1991) and the aforementioned absence of numerical
sets (Pepperberg & Gordon, 2005).

Alex’s two different responses were both intriguing. His failure
to respond on five trials suggests he recognized something was
different from the other trials; that is, even if he did not understand
what was expected, he knew his standard number answers would
not be correct. He did not, as he has done when bored with a task
(e.g., Pepperberg, 1992; Pepperberg & Gordon, 2005), give strings
of wrong answers or request treats or to return to his cage. He acted
more like autistic children (D. Sherman, personal communication,
January 17, 2005) who simply stare at the questioner when asked
“How many X?” and there is nothing to count. His response of
“one” on the fifth, sixth, and seventh trials suggests a comparison
to that of Ai, who confused “one” with “zero.” Although Alex was
never trained on ordinality and had learned numbers in a random
order (review in Pepperberg, 1999), he, like Ai, seemed to grasp
that “none” and “one” represented the lower end of the number
spectrum. As noted earlier, Alex previously used “none” to denote
absence of a designated number of items (Pepperberg & Gordon,
2005), which was a logical extension of his use of “none” to mark
the absence of sameness or difference with respect to various
attributes of object pairs, including absence of a size difference.
Here he was asked to denote the total absence of labeled objects,
a different task.

Stating this situation slightly differently might provide clarifi-
cation: Previously he showed he recognized when there were not,
for example, three of anything or attributes in common for an
object pair; that is, he could search for a specific numerical set or
a likeness or difference in existent object pairs and report on
absence. Now he was asked to comment on items that simply did

not exist. He had not been trained to use “none” this way. Note that
he processed the query (e.g., “How many nut total?”), understand-
ing that he was not asked to label the number of cups; he never said
“two.” Such data suggest that he views his number labels as an
attribute of a collection. For Alex, the attribute can be missing
from a collection and be labeled “none,” but the missing object
itself cannot be denoted as “none.” The distinction is subtle.
Specifically, Alex’s use of “none” is not isomorphic with the adult
human use of “zero,” in that he does not use “none” as he does his
number labels (e.g., Pepperberg, 1987) to denote a specific numer-
osity; that is, he does not view “none” as a numeral or numeric
label. Nothing in his training would lead him to do so. In that
sense, he is like humans in earlier cultures, who did not see zero as
a quantity that could be labeled (Bialystok & Codd, 2000).6

Arguably, had he responded “none,” might an interpretation
have been that he misunderstood the question—that is, assumed
that I had asked “What color bigger/smaller?” or “What’s differ-
ent?” He had not, however, misunderstood the question in previous
such trials; he never said “none” when two equal amounts were
under the cups, and there was no reason to assume he would have
misunderstood the question for this case. Moreover, he had previ-
ously demonstrated that he carefully attended to the several dif-
ferent questions I could ask about object pairs (e.g., “What toy?”;
“How many?”; “What’s same/different?”; and “What color bigger/
smaller?” to two blocks of different colors and sizes; Pepperberg,
1999).

In sum, I suggest that his understanding of “none” as a zero-like
concept with respect to absence may resemble that of young
children, who seem to have to be about 4 years old before they
achieve full adultlike understanding of labels for zero and other
numerals (Bialystok, 2000; Bialystok & Codd, 2000; Wellman &
Miller, 1986). Thus, whether Alex can acquire a full understanding
of the equivalence of “none” to the concept of zero is still to be
determined.

Conclusions and Future Directions

This study demonstrates four previously unreported behavior
patterns involving numerical competence in a nonhuman, nonpri-
mate, nonmammalian subject. First, as noted above, I did not
intend to examine Alex’s abilities with respect to addition, but he
gave evidence of such ability on his own. Second, Alex had to
remember the addends and combine them to form a representation
of the total, which is a more difficult task than simply labeling a
visible set. Third, he demonstrated that his concept of zero is not
isomorphic with that of adult humans, but does match that of
young children and possibly apes. Finally, the data may provide
evidence of a counting-like strategy.

Alex’s considerable training on use of human number labels
may, of course, have enabled him to use representational abilities
that would otherwise have been inaccessible. As noted previously
(Pepperberg & Gordon, 2005), Alex has had over 2 decades of
training on human vocal communication; he is thus similar to
Matsuzawa’s (1985) Ai, Boysen’s (1993) Sheba, and Premack’s
(1976) and Boysen’s (1993) Sarah. All such animals are special in

6 Alexandrian Greeks, for example, used zero to denote the absence of
quantity, but it did not function for them as a number (Kline, 1972).
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their extensive enculturation to human cognitive tasks, and their
achievements suggest that numerical concepts beyond those in-
volving very small quantities (i.e., up to four) are functional in at
least some nonhumans. The factor of enculturation is emphasized
by data on the human Pirahã tribe, who lack number labels and
whose numerical abilities (they seem to have “one,” “two,” and
“many,” if that; Gordon, 2004) appear to be far less complex than
those of enculturated nonhumans.

Most likely, animals’ abilities to learn in the laboratory are
based on an existent cognitive architecture (Pepperberg, 1999);
their training merely provides a way to examine the extent to
which this architecture matches that of educated humans (see
Jarvis et al., 2005). For humans, data suggest that specific brain
areas are involved in representations of numerical quantities, in-
cluding addition (e.g., Dehaene et al., 2003; Lemer, Dehaene,
Spelke, & Cohen, 2003); how might a parrot brain function on
tasks such as those given Alex? Does he have a homologue or
analogue of human inferior parietal cortices, particularly the in-
traparietal sulcus (IPS) and inferior parietal lobule, the human
areas supposedly tied to numerical competence (e.g., Lemer et al.,
2003)? Note that many number comparison tasks involve issues of
spatial attention and nonsymbolic comparisons, which are also
correlated to IPS activity (Coull & Nobre, 1998; Fias, Lammertyn,
Reynvoet, Dupont, & Orban, 2003; Göbel, Johansen-Berg, Beh-
rens, & Rushworth, 2004; Jordan, Schadow, Wuestenberg, Jeinze,
& Jäncke, 2004; Simon, 1999)7 and which are essential for non-
human survival; thus, nonhumans are likely to have analogous
brain areas (note Walsh, 2003). It is interesting to note that data
from one study (Kawashima et al., 2004) suggest that the left
intraparietal cortex is activated more in adults than in children
during all numeric tasks, which suggests that either maturation or
experience might be an issue (but see Spelke & Dehaene, 1999).
Might Alex’s training—and that of other nonhumans given exten-
sive training on numerical symbols (e.g., Biro & Matsuzawa,
2001; Boysen & Berntson, 1989)—have expanded capacities of
these animals toward a representational ability more similar to that
of humans than that which exists in untrained animals (Pepperberg,
1999; Pepperberg & Gordon, 2005) or even untrained humans
(Gordon, 2004)? Clearly, Alex’s numerical abilities are not iden-
tical to those of children, but his exposure to and training on such
tasks are also limited compared to that of an average preschooler.
I suggest that whatever brain areas he uses do indeed function in
an analogous manner to primates, given the similarities in data.

Clearly, additional studies are needed to determine the full
extent of Alex’s numerical capacities. I still need to determine
whether he can learn both to produce and understand the meaning
of an ordinal number sequence and to use “none” as a numeral. I
need to study whether he can, like apes and young children,
understand subtraction (e.g., Boysen & Berntson, 1989, 1990;
Fuson, 1988) and whether both addition and subtraction can be
extended to symbolic use of his Arabic numbers.
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Appendix

All Trials From Experiment 1

Question Response Comment

1. 2 � 1 � ? 3
2. 4 � 2 � ? 6
3. 3 � 1 � ? 4
4. 1 � 1 � ? 2
5. 3 � 2 � ? 3, 5 Hits cup with beak, he says “3”; experimenter repeats question,

he says “5”
6. 1 � 0 � ? 1 Trial uses same-size candy hearts
7. 3 � 3 � ? 6 Trial uses same-size candy hearts
8. 0 � 1 � ? 1
9. 3 � 0 � ? 3

10. 2 � 2 � ? 4
11. 1 � 4 � ? 5 First hits cups, says “blue” (color of cups); experimenter

repeats question, he says “5”
12. 0 � 2 � ? 2
13. 4 � 0 � ? 4
14. 5 � 1 � ? 6
15. 2 � 3 � ? 5
16. 1 � 0 � ? 1
17. 1 � 1 � ? 2 Trial uses same-size candy hearts
18. 1 � 2 � ? 3
19. 3 � 3 � ? 6
20. 0 � 1 � ? 1
21. 2 � 0 � ? 2
22. 2 � 2 � ? 4
23. 3 � 2 � ? 2, 3, 5 Looks at, taps each cup, says “2,” then “3”; experimenter says

“total,” he says “5”
24. 0 � 3 � ? 3
25. 1 � 1 � ? 5, 2
26. 1 � 3 � ? 4
27. 6 � 0 � ? 6
28. 5 � 0 � ? 6, 6, 6, 6 Repeat with 10–15 s, he says “5”
29. 0 � 1 � ? 1
30. 1 � 2 � ? 3 Trial uses same-size candy hearts

*31. 0 � 5 � ? 6, 6, 6, 6 Repeat with 10–15 s, he says “5”; uses same-sized hearts
32. 4 � 0 � ? 4
33. 0 � 2 � ? 2
34. 3 � 0 � ? 3
35. 1 � 0 � ? 1
36. 3 � 3 � ? 3, 6
37. 4 � 1 � ? 5
38. 3 � 1 � ? 3, 4 Trial uses same-size candy hearts
39. 1 � 5 � ? 6
40. 1 � 1 � ? 2 First says “green wool” (tray cover), then “blue” (cup color),

then “2”
41. 0 � 3 � ? 3
42. 0 � 1 � ? 1
43. 0 � 4 � ? 4
44. 2 � 1 � ? 3
45. 5 � 0 � ? 5
46. 1 � 0 � ? 1 No response until experimenter queried Griffin
47. 0 � 6 � ? 6
48. 2 � 0 � ? 2

Note. Order of numbers represents placement on tray.
* Alex is given 10–15 s to respond from here on.
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